Study Programmes 2017-2018
WARNING : 2016-2017 version of the course specifications
Theoretical chemistry and physics applied to biomoleculs structural analysis
Duration :
24h Th, 24h Pr
Number of credits :
Bachelor in bioengineering4
Master in bioengineering : chemistry and bio-industries (120 ECTS)4
Lecturer :
Christian Damblon, Edwin De Pauw
Coordinator :
Christian Damblon
Language(s) of instruction :
French language
Organisation and examination :
Teaching in the second semester
Units courses prerequisite and corequisite :
Prerequisite or corequisite units are presented within each program
Learning unit contents :
Description of the ralation between the different spectrometries.
Quantic theory and Schrödinger equation.
Ultraviolet-visible spectrometry.
Infrared and raman spectrometry.
Nuclear magnetic resonance spectrometry (1H, 13C, 2D).
Mass spectrometry.
Coupled techniques.
Learning outcomes of the learning unit :
Understand theoretical basis of spectrometric methods. Apply these techniques to structural analysis of biological molécules. After completing the course the student is expected to - understand phenomenons that govern the different spectrometry : ultra-violet, visible, infrared, raman, nuclear magnetic resonance, mass spectrometry. - read and explain spectra obtained by the different techniques - apply these techniques on corresponding instruments - identify a molecule from its different spectra
Prerequisite knowledge and skills :
CHIM9268-1 - General Chemistry CHIM9255-3 - Organic Chemistry CHIM9239-2 - Biological molecules chemistry CHIM9267-1 - Equilibrium Chemistry
Planned learning activities and teaching methods :
Theoretical lectures.
Interpretation exercises of spectra obtained by different spectrometers. The exercises include a brief theoretical reminder with interpretation of the spectra of different chemical functions, spectrometry exercises made by students with the help of the teacher, summary exercises implementing different spectra for the same unknown molecule. Practical work for techniques of IR, MALDI-TOF, LC-MS, GC-MS and NMR. Practical work are given by sets of students working in groups. The experiments illustrate and complement the theoretical notions. Writing a report is requested at the end of the sessions. These reports will be corrected to allow the student to evaluate his work. The presence in the laboratory is mandatory. Any absence must be justified by a medical certificate in proper form. Access to the chemistry exam will not be granted to students with more than a third of unexcused absences in labs. For security reasons, access to the laboratory is authorized only for Students with a lab coat, their safety glasses and in order of registration. Glasses should be worn when handling. There is no practical work examination as such. However, questions involving laboratory situations and laboratory 'vocabulary' may appear when evaluating for exercises.
Mode of delivery (face-to-face ; distance-learning) :
Lectures : 24h Practical Works : 24h (Execises 8h, practical work on devices 16h)
Recommended or required readings :
The course notes include some of the literature that refers student to books that can help to better understanding of the material.  
Assessment methods and criteria :
Students must bring their student Ulg card and their identity card to attend all events, under penalty of being denied access and consideration of the event. The distribution of evaluations is as follows:
- Written exam:Theory + exercices: 60% 
Practicals :40%  Attendance at practical work on devices is mandatory.
Work placement(s) :
Organizational remarks :
Contacts :
Prof. Damblon Christian                                 
Université de Liège Chimie Biologique                                     Département de Chimie                                         +32 4 3663788                     
Prof. De Pauw Edwin Université de Liège Chimie Physique                                             Laboratoire de spectrométrie de masse        Département de Chimie +32 43663415
Items online :
Sectroscopic methods, Mass Spectrometry
Molecular structure analysis, mass spectrometry